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Abstract

In this paper, a solution to the free vibration problem of a stepped column with cracks is presented. The open cracks

occur at step changes in the cross-section of the column or at the intermediate points of the uniform segments. The cracks

in the column are represented by massless rotational springs. The frequency equation is obtained by using properties of the

Green’s functions corresponding to the uniform segments of the column. The approach pertains to the vibration of

columns consisting of an arbitrary number of uniform segments. The stability of the column, which depends on the

position and size of the cracks, is numerically investigated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of damage in the components of a structure can have an influence on the dynamic behaviour
of the whole structure and can lead to its failure. Catastrophic failure can be caused by the fatigue cracking of
a structural member. To predict the failure, vibration monitoring can be used to detect change in the dynamic
characteristics of the structure. If we are to correctly interpret any observed changes, we need to be acquainted
with the influence of damage on the dynamic characteristics of structures. For this reason, knowledge of the
effects of damage on the vibration of the structures is of such great interest to engineers and designers. In
particular, understanding the effect of cracks on the vibration and stability of columns is very important
because of the practical applications.

The presence of cracks in a structure changes the structure flexibility and influences the dynamic response of
this structure. Sensitivity analysis of structures to cracks was presented by Chondros and Dimarogonas [1].
The influence of crack on the dynamic characteristics of structures can be simulated by continuous crack
flexibility. This approach was discussed by Chondros in paper [2]. The continuous cracked beam vibration
theory for lateral vibration of beams with open cracks was developed by Chondros et al. [3], and a review of
the problems to vibration of cracked structures was published by Dimarogonas in paper [4].

Determining the dynamic characteristics of beams and columns with cracks on the basis of mathematical
models has been the subject of several studies [5–13]. In these studies the effect of a crack is simulated by the
flexibility of a massless rotational spring. In this model, the local flexibility of the beam at the location of the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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crack is represented by a function of the crack depth. This function for one- or two-sided open cracks is
derived on the basis of fracture mechanics concepts [5–8].

The effect of the cracks on the free vibration frequencies of uniform beams has been investigated by many
researchers, e.g. Refs. [5–9]. In these papers, the vibrations of cracked Euler–Bernoulli beams were considered.
Ostachowicz and Krawczuk in paper [5] presented a solution to a problem for a cantilever beam with two open
cracks by using an exact method. The frequency equation for beams with an arbitrary number of cracks using
a transfer matrix method was derived by Lin et al. [6]. In both papers the axial loads of the beams were not
taken into consideration. The effect of axial loads on the vibrations of uniform, cracked beams was
investigated in Refs. [7–9]. Masoud et al. [7] present experimental and theoretical results concerning an axially
loaded fixed–fixed cracked beam, and Binici [8] compared the results obtained by using the proposed approach
with the results obtained using the finite element method for axially loaded beams with multiple cracks. The
stability behaviour of a column with a single crack, subjected to follower or vertical loads, was studied by
Anifantis and Dimarogonas [9].

The vibration problems of axially loaded stepped Euler–Bernoulli beams were considered in Refs. [10–13].
In paper [10], DeRosa used an exact approach to derive the frequency equation of a stepped beam with
follower forces at the step. The exact method was also applied by Naguleswaran [11] to solve the problem of
the free vibration and stability of a stepped beam under different axial force in the beam segments. The
method consists of dividing the beam into uniform segments and using the conditions of continuity of
deflection and slope, compatibility of bending moment and shearing force at the steps. This approach can be
applied to the vibration problems of stepped beams as well as of cracked ones.

The dynamic flexibility method was applied to vibration problems of stepped Euler–Bernoulli beams by Lee
and Bergman [12]. The solution to the problem is obtained in terms of the dynamic Green’s function.
Examples of this method, being applied to the frequency analysis of axially loaded stepped beams, are
presented by Kukla and Zamojska [13]. The solution to the problem is expressed by those Green’s functions
corresponding to the uniform segments of the stepped beam. The Green’s functions are obtained as solutions
of auxiliary boundary problems [12,13]. Various methods for deriving the Green’s functions are presented in a
book by Duffy [14].

In this paper, an analysis of stability and vibration of a column with transverse cracks is presented. The
formulation and solution of the problem concern an axially loaded stepped column with an arbitrary number
of open cracks. The cracks are represented by rotational springs. The solution to the free vibration problem is
obtained by using the Green’s function method.
2. Formulation of the problem

Consider a stepped column consisting of n segments of constant cross-sections (Fig. 1). Based on the
assumption that the shear deformation and rotary inertia are negligible, the differential equations for the
transverse displacements wi of the column segments are

EIi

q4wi

qx4
þ Pi

q2wi

qx2
þ rAi

q2wi

qt2
¼ 0; i ¼ 1; 2; . . . ; n (1)

where Pi is the axial load acting on the i-th segment of the column, rAi and EIi are the mass per unit length and
the flexural rigidity of the i-th segment, respectively.

The step-wise changes of geometric and/or physical parameters of the considered column are at points x1,
x2,y, xn. We assume that a crack can occur at each of these points. These points determine the uniform
segments of the column. In the model it is assumed that the uniform segments are connected by a rotational
spring, and as such the following conditions are satisfied at these points:

wiþ1ðxi; tÞ � wiðxi; tÞ ¼ 0 (2)

qwiþ1ðxi; tÞ

qx
�

qwiðxi; tÞ

qx
¼ yiL

q2wiðxi; tÞ

qx2
(3)
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Fig. 1. A sketch of the considered system.
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EIi

q2wiðxi; tÞ

qx2
¼ EIiþ1

q2wiþ1ðxi; tÞ

qx2
¼ miðtÞ (4)

EIi

q3wiðxi; tÞ

qx3
þ Pi

qwiðxi; tÞ

qx
¼ EIiþ1

q3wiþ1ðxi; tÞ

qx3

þ Piþ1
qwiþ1ðxi; tÞ

qx
¼ siðtÞ; i ¼ 1; 2; . . . ; n� 1 (5)

where yi is the parameter characterising the rotational spring which models the i-th crack, which occurs
between the i-th and (i+1)-th segments of the column [5]. Functions mi(t) and si(t), respectively, represent the
bending moment and shear force acting on the right end of the i-th segment. A schematic diagram of the i-th
segment of the considered column is shown in Fig. 2.

Functions w1 and wn, which describe the transverse displacements of the edge segments, satisfy boundary
conditions and how the column ends are constrained. In this study it is assumed that the column is clamped at
x ¼ 0 and free at x ¼ L, and as such the conditions for functions w1 and wn are

w1jx¼0 ¼
qw1

qx

����
x¼0

¼ 0 (6)

EIn

q2wn

qx2

����
x¼L

¼ 0; EIn

q3wnðLÞ

qx3
þ Pn

qwnðLÞ

qx

� �����
x¼L

¼ 0 (7)

For the free vibration of the column, we assume that

wiðx; tÞ ¼ Y iðxÞ cos ot; miðtÞ ¼Mi cos ot; siðtÞ ¼ Si cos ot (8)

where o is the natural frequency of the column. Substituting Eq. (8) into Eqs. (1)–(7), we obtain

d4Y i

dx4
þ 2mip

d2Y i

dx2
� k4i O

4Y i ¼ 0; i ¼ 1; 2; . . . ; n (9)

Y 1ð0Þ ¼
dY 1ð0Þ

dx
¼ 0 (10)
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Fig. 2. Segments of the column, (a) two first segments with a crack at the step, and (b) end conditions for forces of the column segment.
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d2Y nðLÞ

dx2
¼ 0;

d3Y nðLÞ

dx3
þ 2mnp

dY nðLÞ

dx
¼ 0 (11)

Y iþ1ðxiÞ � Y iðxiÞ ¼ 0 (12)

dY iþ1ðxiÞ

dx
�

dY iðxiÞ

dx
¼ yiL

d2Y iðxiÞ

dx2
(13)

d2Y iðxiÞ

dx2
¼

1

bi

Mi;
d2Y iþ1ðxiÞ

dx2
¼

1

biþ1
Mi (14)

d3Y iðxiÞ

dx3
þ 2mip

dY iðxiÞ

dx
¼

1

bi

Si,
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d3Y iþ1ðxiÞ

dx3
þ 2miþ1p

dY iþ1ðxiÞ

dx
¼

1

biþ1
Si; i ¼ 1; 2; . . . ; n� 1 (15)

ci where rAi ¼ airA, EIi ¼ biEI, Pi ¼ ciP,
Pn

i¼1 ¼ 1, ki
4
¼ ai/bi, mi ¼ ci/bi, p ¼ P/2EI, O4

¼ (rA/EI)o2,
Mi ¼Mi=EI, Si ¼ Si=EI, EI, and rA are the reference stiffness and mass per unit length of the column,
respectively.

The condition in Eq. (13) after taking into account Eq. (14a) can be rewritten as

dY iþ1ðxiÞ

dx
�

dY iðxiÞ

dx
¼ yi

L

bi

Mi (16)

For the open cracks considered here, yi is a function of the ratio between the depth of the crack ai and half
of the height hi of the i-th segment of the column. For double-sided open cracks, the function is given by [5,7]

yiðgiÞ ¼ 6pg2i
hi

L
ð0:5033� 0:9022gi þ 3:412g2i � 3:181g3i þ 5:793g4j Þ (17)

where gi ¼ ai/hi, hi ¼ min(hi, hi+1) for i ¼ 1,y, n�1.
3. Solution to the problem

The solution to the free vibration problem is obtained by using the properties of the Green’s functions. The
Green’s functions Gi (i ¼ 1, 2,y, n), which are necessary in the application of this approach, satisfy
differential equations [14]

d4Gi

dx4
þ 2mip

d2Gi

dx2
� k4i O

4Gi ¼ dðx� xÞ (18)

where d( � ) is Dirac’s delta function. Moreover, function G1 satisfies the homogeneous boundary conditions
corresponding to the clamped–free beam-column

G1jx¼0 ¼ 0;
qG1

qx

����
x¼0

¼ 0;
q2G1

qx2

����
x¼x1

¼ 0;
q3G1

qx3
þ 2mnp

qG1

qx

� �����
x¼x1

¼ 0 (19)

and the functions Gi (i ¼ 2,y, n), satisfy the homogeneous boundary conditions corresponding to the
free–free beam-column

q2Gi

qx2

����
x¼xi�1

¼ 0;
q3Gi

qx3
þ 2mip

qGi

qx

� �����
x¼xi�1

¼ 0;
q2Gi

qx2

����
x¼xi

¼ 0;
q3Gi

qx3
þ 2mip

qGi

qx

� �����
x¼xi

¼ 0 (20)

The derivation of the Green’s functions for vibration problems of axially loaded stepped beams was
presented in Ref. [13]. The functions G1(x, x) and Gi(x, x) for i ¼ 2,y, n, with the notation applied in this
paper are given in Appendix A.

On the basis of Eq. (9), which corresponds to the uniform segments of the column, the following equations
can be written:

Z xi

xi�1

d4Y i

dx4
þ 2mip

d2Y i

dx2
� k4i O

4Y i

� �
Giðx;xÞ dx ¼ 0; i ¼ 1; . . . ; n (21)

where x0 ¼ 0. Integrating the above integrals by parts and using the conditions in Eqs. (10) and (11), (14) and
(15) and (19) and (20), we obtain

Z xi

xi�1

q4Gi

qx4
þ 2mip

q2Gi

qx2
� k4i O

4Gi

� �
Y iðxÞ dx ¼ �

1

bi

½SiGiðx;xiÞ � Si�1Giðx;xi�1Þ�

þ
1

bi

Mi

qGiðx; xiÞ

qx
�Mi�1

qGiðx;xi�1Þ

qx

� �
(22)
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The left-hand side of Eq. (22) after using Eq. (18) assumes the form

Z xi

xi�1

q4Gi

qx4
þ 2mip

q2Gi

qx2
� k4i O

4Gi

� �
Y iðxÞ dx ¼

Z xi

xi�1

dðx� xÞY iðxÞ dx (23)

The property of the Dirac delta function gives [14]Z xi

xi�1

dðx� xÞY iðxÞdx ¼ Y iðxÞ; xi�1oxoxi (24)

Taking into account Eqs. (23) and (24) in Eq. (22), we have

Y iðxÞ ¼
1

bi

�
qGiðx;xi�1Þ

qx
Mi�1 þ Giðx;xi�1ÞSi�1 þ

qGiðx;xiÞ

qx
Mi � Giðx;xiÞSi

� �
(25)

where M0 ¼Mn ¼ 0, S0 ¼ Sn ¼ 0.
The functions Yi(x) given by Eq. (25) are expressed by the Green’s functions and their derivatives.

An unknown frequency parameter O, which occurs in the equation, can be determined by using the conditions
in Eqs. (12) and (16). After substituting functions Yi(x) into these conditions, a set of equations is obtained.
This set of equations may be written in the following matrix form:

AðoÞ x ¼ 0 (26)

where x ¼ [M1yS1yMn�1ySn�1]
T and A(o) ¼ [aij]1pi, jp2(n�1). The non-zero elements aij of matrix A are

given in Appendix B.
A nontrivial solution to Eq. (26) exists when the determinant of matrix A is set equal to zero, yielding the

frequency equation of the stepped column with n cracks:

detAðoÞ ¼ 0 (27)

Frequency equation (27) with respect to the circular frequencies ok is then solved numerically using an
approximate method. The mode shapes corresponding to the frequencies are given by Eq. (25) when the
(2n�1) coefficients M1, S1, y, Mn�2, Sn�2, and Mn�1, in dependence with Sn�1, are determined from Eq. (26).

It should be noted that the presented formulation and solution to the vibration problem concern the case of
a column with cracks located at intermediate points on the uniform segments. (If two adjacent segments have
Table 1

First two critical forces of a one-stepped column with crack at the step

A2/A1 g1 ¼ 0 g1 ¼ 0.25 g1 ¼ 0.5 g1 ¼ 0.75

p1 p2 p1 p2 p1 p2 p1 p2

l1 ¼ 0.375L

1.0 2.4674 22.2066 2.4187 22.1820 2.1451 22.0228 1.3069 21.1497

0.8 1.8546 14.5763 1.8323 14.5699 1.7007 14.5295 1.2128 14.3291

0.6 1.0594 8.6943 1.0540 8.6735 1.0210 8.5451 0.8696 7.9652

0.4 0.3744 3.3308 0.3740 3.3272 0.3713 3.3046 0.3572 3.1886

l1 ¼ 0.5L

1.0 2.4674 22.2066 2.4320 21.8878 2.2236 20.0457 1.4793 14.8092

0.8 2.0839 14.6739 2.0626 14.6371 1.9348 14.4058 1.4303 13.3155

0.6 1.3918 9.1850 1.3844 9.1845 1.3388 9.1814 1.1318 9.1645

0.4 0.5549 4.6677 0.5541 4.6631 0.5493 4.6342 0.5244 4.4861

l1 ¼ 0.625L

1.0 2.4674 22.2066 2.4454 21.6013 2.3095 18.3958 1.7181 11.2621

0.8 2.2809 15.7419 2.2648 15.5579 2.1648 14.4837 1.7149 10.9501

0.6 1.8227 9.4312 1.8140 9.4147 1.7598 9.3116 1.5057 8.8163

0.4 0.8952 5.5777 0.8937 5.5772 0.8843 5.5737 0.8359 5.5544

The values written in bold-italic are in accordance with the results presented in Ref. [11].
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Fig. 3. Frequency curves for uniform (a, c, e) and tapered (b, d, f) columns with one open crack at location: x1 ¼ 0.375L (a, b), x1 ¼ 0.5L
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the same geometrical dimensions and physical properties, then the two parts of the column can be treated as
one segment with a crack).
4. Numerical examples

The presented solution was used in the numerical analysis of free vibration and stability of stepped columns
with cracks. The first example concerns a one-stepped column with a crack at the step. The calculations were
performed for columns with a step in three different positions: l1 ¼ 0.375; 0.5; and 0.675L. For each
considered column, four cases of the crack depths (g1 ¼ 0; 0.25; 0.5; and 0.75) and four values of the ratios of
the width of the column segments (A2/A1 ¼ 0.4; 0.6; 0.8; and 1.0) are assumed. The two critical forces
calculated for these columns are presented in Table 1. The values of the critical forces obtained here for g1 ¼ 0,
A2/A1 ¼ 0.8; l1 ¼ 0.375L and l1 ¼ 0.5L, are in accordance with the results presented by Naguleswaran [11].
(The remaining results are calculated for other data).

The free vibration frequencies of a non-uniform column can be approximated by frequencies of the multi-
stepped columns. The approach presented in this paper enables an arbitrary number of uniform segments,
Y
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Fig. 4. First and second mode shapes of the column with a double-sided crack located at x1/L ¼ 0.375 (a, b), x1/L ¼ 0.5 (c, d),

x1/L ¼ 0.625 (e, f) for different axial loads and crack ratio, g1 ¼ 0.5, p ¼ 0.15 ——— , g1 ¼ 0.7, p ¼ 0.15 � � � � � � � � � , g1 ¼ 0.5,

p ¼ 0.3 – – – – – – –, g1 ¼ 0.7, p ¼ 0.3 – � – � – � – � – � –.
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which create a stepped column, to be taken into account. The approximation of the shape of the non-uniform
column by the stepped column with a suitably large number of uniform segments leads to sufficiently accurate
numerical results. The results are valid when the assumptions concerning the crack model are satisfied.

The frequency curves presented in Fig. 3 concern columns with one open crack which are axially loaded by a
force that is represented by parameter p. Numerical calculations were performed for two cases of the cross-
section of the column: (1) quadratic cross-section with a constant side: h0 ¼ 0.035L (Fig. 3(a, c, e)), (2)
rectangular cross-section, one side of which is constant and the second varies as a linear function of the axial
coordinate: h0 ¼ 0.05L at the clamped end and hI ¼ 0.02L at the free end of the column (Fig. 3(b, d, f)). Three
locations of the crack on the column are assumed: x1 ¼ 0.375L (Fig. 3(a, b)), x1 ¼ 0.5L (Fig. 2 (c, d)),
x1 ¼ 0.625L (Fig. 3 (e, f)), and three values of the parameter characterising the flexibility of the column at the
crack location are considered: g1 ¼ 0 (solid lines in Fig. 3), g1 ¼ 0.5 (dotted lines), and g1 ¼ 0.75 (dashed lines).
The results of calculations show that the non-uniformity of the column as well as the location and size of the
crack can significantly affect the eigenfrequencies of the column. In particular, a crack in the column causes a
decrease in the critical forces.

The mode shapes corresponding to the first two frequencies of the tapered column with one double-sided
open crack are presented in Fig. 4. The solid and dashed lines are obtained for crack ratio g1 ¼ 0.5 and
the axial loads are characterised by dimensionless parameters p ¼ 0.15 and S ¼ 0.3, respectively. Similarly, the
dotted and dashed–dotted lines are plotted for the same p parameter, but the crack ratio is assumed as
g1 ¼ 0.7. In the calculations, the location of the crack on the column are assumed as: x1 ¼ 0.375L (Fig. 4(a, b)),
x1 ¼ 0.5L (Fig. 4(c, d)), and x1 ¼ 0.625L (Fig. 4(e, f)). The curves show changes in the ratios Yi(x)/Y i, where
Yi(x) is the mode shape of the i-th segment of the cracked column and Y i is the amplitude of displacement of
the non-cracked column at x ¼ x1. The effect of the crack on the mode shape is rather small. Therefore, it is
necessary to use the information on changes in the eigenfrequencies and mode shapes to predict the crack
position and the crack ratio.
5. Conclusions

In this paper a solution to the free vibration problem of axially loaded stepped columns with open cracks
has been presented. The frequency equation was obtained by using the properties of the Green’s functions.
The Green’s functions corresponding to the clamped–free and free–free beam columns were used. The
formulation and solution of the problem concern stepped columns with an arbitrary number of cracks. The
local flexibilities introduced into the structure by the cracks are represented by rotational springs. Stepped
columns with cracks, which consist of any number of uniform segments, may be used as an approximation of
non-uniform columns, with cracks whose cross-sectional area continuously varies.

The changes in the natural frequencies observed in vibration monitoring of structures can indicate damage
to their elements. Identifying damage at a primary stage when it first arises is vitally important. However, the
small changes in the eigenfrequencies are difficult to investigate in practice. In this paper, the exact solution to
the vibration problem can be used to investigate the influence of the crack on the column vibration in the case
of small changes in the eigenfrequencies.

The local flexibilities of the column introduced by cracks cause a decrease in the eigenfrequencies and the
critical forces of this column. Numerical example shows that the non-uniformity of the column as well as the
location and size of the crack can significantly affect the eigenfrequencies and critical forces of the column.
Although the examples presented in this paper concern stepped columns with one open crack, the approach
may be used in the vibration analysis of the columns with an arbitrary number of cracks.
Appendix A

In this paper Green’s functions Gi, which are solutions to boundary problems in Eqs. (18 and 19) or
Eqs. (18 and 20) are used. To present the solutions to these problems, four linearly independent solutions to a
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homogeneous differential equation associated with the four-order Eq. (18) are introduced:

fð0Þi ðxÞ ¼ cosh bix� cos aix; fð1Þi ðxÞ ¼ bi sinh bixþ ai sin aix,

fð2Þi ðxÞ ¼ b2i cosh bixþ a2i cos aix; fð3Þi ðxÞ ¼ b3i sinh bix� a3i sin aix

where ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2i p2 þ k4i O

4
qr

, bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2i p2 þ k4i O

4
qr

. To abbreviate the notation, the following

functions are used:

f
ð1Þ

i ðxÞ ¼
sinh bix

bi

�
sin aixi

ai

; f
ð2Þ

i ðxÞ ¼
cosh bix

b2i
þ

cos aix

a2i
; f

ð3Þ

i ðxÞ ¼
sinh bix

b3i
þ

sin aixi

a3i

Using the functions fi
(j)(x) and f

ðjÞ

i ðxÞ, the Green’s function G1, corresponding to a clamped–free beam,

may be written in the form [13]

G1ðx; x;OÞ ¼
1

a21 þ b21
½C11ðxÞf

ð0Þ
1 ðxÞ þ C12ðxÞf̄

ð1Þ

1 ðxÞ þ f̄
ð1Þ

1 ðx� xÞHðx� xÞ� (A1)

where H denotes a Heaviside function and C11(x) and C12(x) are

C11ðxÞ ¼
1

D1
fð1Þ1 ðx1Þf

ð2Þ

i ðx1 � xÞ � f
ð2Þ

1 ðx1Þf
ð1Þ
1 ðx1 � xÞ

n o

C12ðxÞ ¼
1

D1
f̄
ð1Þ

1 ðx1Þf
ð1Þ
1 ðx1 � xÞ � fð2Þ1 ðx1Þf̄

ð2Þ

1 ðx1 � xÞ
n o

where D1 ¼ fð2Þ1 ðx1Þf
ð2Þ

1 ðx1Þ � fð1Þ1 ðx1Þf
ð1Þ

1 ðx1Þ.

The Green’s function Gi, corresponding to free–free beams, can be written in the form

Giðx; x;OÞ ¼ Ci1ðxÞf
ð1Þ
i ðx� xi�1Þ þ Ci2ðxÞf̄

ð2Þ

i ðx� xi�1Þ

þ f̄
ð1Þ

i ðx� xÞHðx� xÞ; i ¼ 2; 3; . . . ; n (A2)

where functions Ci1(x), Ci2(x) are

Ci1ðxÞ ¼
1

Di

ffð0Þi ðliÞf
ð2Þ

i ðxi � xÞ � f
ð3Þ

i ðliÞf
ð1Þ
i ðxi � xÞg

Ci2ðxÞ ¼
1

Di

ffð0Þi ðliÞf
ð1Þ
i ðxi � xÞ � fð3Þi ðliÞf

ð2Þ

i ðxi � xÞg

where Di ¼ fð3Þ1 ðliÞf
ð3Þ

1 ðliÞ � ½f
ð0Þ
i ðliÞ�

2.

Appendix B

The non-zero elements aij of the matrix A which occur in Eq. (25) are as follows (n is the number of uniform
segments of the stepped beam):
�
 for i ¼ 1, 2,y, n�1

a2i�1; 2i�1 ¼ �
qGiðxi;xiÞ

qx
� mi

qGiþ1ðxi;xiÞ

qx
; a2i�1;2i ¼ Giðxi; xiÞ þ miGiþ1ðxi;xiÞ;

a2i; 2i�1 ¼ �
q2Giðxi; xiÞ

qxqx
� mi

q2Giþ1ðxi;xiÞ

qxqx
� yi; a2i;2i ¼

qGiðxi;xiÞ

qx
þ mi

qGiþ1ðxi; xiÞ

qx
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for i ¼ 1, 2,y, n�2
�
a2i�1; 2iþ1 ¼ mi

qGiþ1ðxi;xiþ1Þ

qx
; a2i�1;2iþ2 ¼ �miGiþ1ðxi; xiþ1Þ

a2i; 2iþ1 ¼ mi

q2Giþ1ðxi;xiþ1Þ

qxqx
; a2i;2iþ2 ¼ �mi

qGiþ1ðxi;xiþ1Þ

qx
�
 for i ¼ 2, 3,y, n�1

a2i�1; 2i�3 ¼
qGiðxi;xi�1Þ

qx
; a2i�1;2i�2 ¼ �Giðxi; xi�1Þ

a2i; 2i�3 ¼
q2Giðxi;xi�1Þ

qxqx
; a2i;2i�2 ¼ �

qGiðxi;xi�1Þ

qx
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